Simple Procedure for the Isolation of Mesenchymal Stem Cells from Different Parts of the Human Umbilical Cord

Ahmad Suyoko, Pekik Wiji Prasetyaningrum, Endah Puji Septisetyani

Abstract


The umbilical cord and placenta are both sources of mesenchymal stem cells (MSCs) that are promising for cell-based therapy. Furthermore, compared to other MSCs sources, they are easy to obtain with no invasive procedures. This study presents an adapted method for stem cell isolation from three different parts of the human umbilical cord, including Wharton’s jelly (WJ), cord lining (CL), and cord-placenta junction (CPJ). The isolation consists of sample preparation, tissue dissection into distinct anatomical regions, mincing and enzyme digestion, and explant culturing. In addition, we monitored when the cells migrated from the explant to the bottom of the cell culture dish and passed the cells after they became confluent. This study found that WJ cells were the first to reach confluence at Passage 0 (P0). In contrast, CL cells needed the longest time to get confluence at P0 but displayed faster cell growth after subsequent passages (P1-P2). In addition, CPJ cells showed growth retardation after P1 and P2. Altogether, we could extract the MSCs from umbilical cord tissue explants by using DMEM supplemented with 10% FBS, 100 IU/mL penicillin, and 100 μg/mL streptomycin as general cell culture medium and omitting the use of gentamicin. However, the MSCs may need a more complex specified medium for optimum cell regeneration for further cell expansion.


Keywords: mesenchymal stem cells, umbilical cord, Wharton’s jelly, cord lining, cord-placenta junction.


Full Text:

PDF

References


Arutyunyan, I., Elchaninov, A., Makarov, A., and Fatkhudinov, T., 2016, Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy, Stem Cells Int., 6901286. CrossRef

Bacakova, L., Zarubova, J., Travnickova, M., Musilkova, J., Pajorova, J., Slepicka, P., et al., 2018, Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells–a review, Biotechnol. Adv., 36(4), 1111–1126. CrossRef

Beeravolu, N., McKee, C., Alamri, A., Mikhael, S., Brown, C., Perez-Cruet, M., and Chaudhry, G.R., 2017, Isolation and characterization of mesenchymal stromal cells from human umbilical cord and fetal placenta, J. Vis. Exp., (122), e55224. CrossRef

Berebichez-Fridman, R., and Montero-Olvera, P. R., 2018, Sources and clinical applications of mesenchymal stem cells state-of-the-art review, Sultan Qaboos Univ. Med. J., 18(3), e264–e277. CrossRef

Chang, Y., Goldberg, V.M., and Caplan, A.I., 2006, Toxic effects of gentamicin on marrow-derived human mesenchymal stem cells, Clin. Orthop. Relat. Res., 452, 242-249. CrossRef

Chen, G., Yue, A., Ruan, Z., Yin, Y., Wang, R., Ren, Y., and Zhu, L., 2015, Comparison of biological characteristics of mesenchymal stem cells derived from maternal-origin placenta and Wharton’s jelly, Stem Cell Res. Ther., 6, 228-234. CrossRef

Chia, W. K., Cheah, F. C., Abdul Aziz, N. H., Kampan, N. C., Shuib, S., Khong, T. Y., et al., 2021, A Review of Placenta and Umbilical Cord-Derived Stem Cells and the Immunomodulatory Basis of Their Therapeutic Potential in Bronchopulmonary Dysplasia, Front. Pediatr., 9, 615508. CrossRef

Denu, R.A., Nemcek, S., Bloom, D.D., Goodrich, A.D., Kim, J., Mosher, D.F., and Hematti, P., 2016, Fibroblasts and mesenchymal stromal/stem cells are phenotypically indistinguishable, Acta Haematol, 136(2), 85-97. CrossRef

di Scipio, F., Sprio, A.E., Carere, M.E., Yang, Z., and Berta, G.N., 2017, A simple protocol to isolate, characterize, and expand dental pulp stem cells, Methods Mol. Biol., 1553, 1-13. CrossRef

Elahi, K.C., Klein, G., Avci-Adali, M., Sievert, K.D., Macneil, S., and Aicher, W.K., 2016, Human mesenchymal stromal cells from different sources diverge in their expression of cell surface proteins and display distinct differentiation patterns, Stem Cells Int., 5646384. CrossRef

El-Demerdash, R.F., Hammad, L.N., Kamal, M.M., and El Mesallamy, H.O., 2015, A comparison of Wharton’s jelly and cord blood as a source of mesenchymal stem cells for diabetes cell therapy, Regen. Med.. CrossRef

Hassan, G., Kasem, I., Soukkarieh, C., and Aljamali, M., 2017, A simple method to isolate and expand human umbilical cord derived mesenchymal stem cells: Using explant method and umbilical cord blood serum, Int. J. Stem Cells, 10, 184-192. CrossRef

Hematti, P., 2012, Mesenchymal stromal cells and fibroblasts: A case of mistaken identity?, Cytotherapy, 14(5), 516-521. CrossRef

Kagiwada, H., Fukuchi, T., Machida, H., Yamashita, K., and Ohgushi, H., 2008, Effect of gentamicin on growth and differentiation of human mesenchymal stem cells, J. Toxicol. Pathol., 1, 61-67. CrossRef

Karahuseyinoglu, S., Cinar, O., Kilic, E., Kara, F., Akay, G.G., Demiralp, D.Ö., et al., 2007, Biology of Stem Cells in Human Umbilical Cord Stroma: In Situ and In Vitro Surveys, Stem Cells, 25(2), 319–331. CrossRef

Lee, M.O., Moon, S.H., Jeong, H.C., Yi, J.Y., Lee, T.H., Shim, S.H., et al., 2013, Inhibition of pluripotent stem cell-derived teratoma formation by small molecules, Proc. Natl. Acad. Sci.U.S.A., e3281–e3290. CrossRef

Li, X., Bai, J., Ji, X., Li, R., Xuan, Y., and Wang, Y., 2014, Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation, Int. J. Mol. Med., 34, 695-704. CrossRef

Manochantr, S., U-pratya, Y., Kheolamai, P., Rojphisan, S., Chayosumrit, M., Tantrawatpan, C., et al., 2013, Immunosuppressive properties of mesenchymal stromal cells derived from amnion, placenta, Wharton’s jelly and umbilical cord, Intern. Med. J., 43(4), 430–439. CrossRef

Marcus, A.J., and Woodbury, D., 2008, Fetal stem cells from extra-embryonic tissues: do not discard, J Cell Mol Med., 12, 730-42. CrossRef

Mennan, C., Wright, K., Bhattacharjee, A., Balain, B., Richardson, J., and Roberts, S., 2013, Isolation and characterisation of mesenchymal stem cells from different regions of the human umbilical cord, Biomed Res. Int., 916136. CrossRef

Pereira, W.C., Khushnooma, I., Madkaikar, M., and Ghosh, K., 2008, Reproducible methodology for the isolation of mesenchymal stem cells from human umbilical cord and its potential for cardiomyocyte generation, Tissue Eng Regen Med., 2(7), 394-399. CrossRef

Pu, L., Meng, M., Wu, J., Zhang, J., Hou, Z., Gao, H., et al., 2017, Compared to the amniotic membrane, Wharton’s jelly may be a more suitable source of mesenchymal stem cells for cardiovascular tissue engineering and clinical regeneration, Stem Cell Res. Ther., 8, 72-87. CrossRef

Saeedi, P., Halabian, R., and Fooladi, A.A.I., 2019, A revealing review of mesenchymal stem cells therapy, clinical perspectives and Modification strategies, Stem cell investigation, 6, 34. CrossRef

Semenova, E., Grudniak, M.P., Machaj, E.K., Bocian, K., Chroscinska-Krawczyk, M., Trochonowicz, M., et al., 2021, Mesenchymal Stromal Cells from Different Parts of Umbilical Cord: Approach to Comparison & Characteristics, Stem Cell Rev. Reports, 17, 1780–1795. CrossRef

Short, B., Brouard, N., Occhiodoro-Scott, T., Ramakrishnan, A., and Simmons, P.J. 2003, Mesenchymal stem cells, Archives of medical research, 34(6), 565-571. CrossRef

Sibov, T.T., Severino, P., Marti, L.C., Pavon, L.F., Oliveira, D.M., Tobo, P.R., et al., 2012, Mesenchymal stem cells from umbilical cord blood: Parameters for isolation, characterization and adipogenic differentiation, Cytotechnology, 64(5), 511–521. CrossRef

Singh, T.P., Sherpa, M.L., Pradhan, A., and Singh, T.A., 2019, Development of a simple selection protocol for optimizing the harvest of mesenchymal stem cells from explanted human umbilical cord Wharton’s jelly, Asian J. Med. Sci., 10(4), 1–8. CrossRef

Stubbendorff, M., Deuse, T., Hua, X., Phan, T. T., Bieback, K., Atkinson, K., et al., 2013, Immunological properties of extraembryonic human mesenchymal stromal cells derived from gestational tissue, Stem Cells Dev., 22(19), 2619-2629. CrossRef

Subramanian, A., Fong, C.Y., Biswas, A., and Bongso, A., 2015, Comparative characterization of cells from the various compartments of the human umbilical cord shows that the Wharton’s jelly compartment provides the best source of clinically utilizable mesenchymal stem cells, PLoS One, 10(6), e0127992. CrossRef

Tanaka, K., Ogino, R., Yamakawa, S., Suda, S., and Hayashida, K., 2022, Role and function of mesenchymal stem cells on fibroblast in cutaneous wound healing, Biomedicines, 10(6), 1391. CrossRef

Tao, H., Chen, X., Wei, A., Song, X., Wang, W., Liang, L., et al., 2018, Comparison of teratoma formation between embryonic stem cells and parthenogenetic embryonic stem cells by molecular imaging, Stem Cells Int., 7906531. CrossRef

Tsagias, N., Koliakos, I., Karagiannis, V., Eleftheriadou, M., and Koliakos, G.G., 2011, Isolation of mesenchymal stem cells using the total length of umbilical cord for transplantation purposes, Transfusion Medicine, 21(4), 253-261. CrossRef

Yoon, J.H., Roh, E.Y., Shin, S., Jung, N.H., Song, E.Y., Chang, J.Y., et al., 2013, Comparison of explant derived and enzymatic digestion-derived MSCs and the growth factors from Wharton’s jelly, Biomed Res. Int., 428726. CrossRef

Zheng, S., Gao, Y., Chen, K., Liu, Y., Xia, N., and Fang, F., 2022, A Robust and Highly Efficient Approach for Isolation of Mesenchymal Stem Cells From Wharton’s Jelly for Tissue Repair, Cell Transplantation, 31, 09636897221084354. CrossRef




DOI: http://dx.doi.org/10.14499/indonesianjcanchemoprev13iss2pp104-113

Copyright (c) 2022 Indonesian Journal of Cancer Chemoprevention

Indexed by:

                  

               

 

Indonesian Society for Cancer Chemoprevention