The Role of Serum IL-23 and Volatile Organic Compound Levels to RECIST 1.1 in The Evaluation of Therapeutic Response in Lung Cancer

Rizal Muldani Tjahyadi, Ungky Agus Setyawan, Tri Wahju Astuti, Susanthy Djajalaksana, Arinto Yudi Ponco Wardoyo

Abstract


The Response Evaluation Criteria in Solid Tumors (RECIST 1.1) is the gold standard for the assessment of lung cancer progression. However, the assessment and diagnosis of early treatment failure is challenging due to the limitations of current tools, as well as the long intervals and unavoidable side effects.This study aims to correlate volatile organic compound (VOC) patterns, serum level of interleukin-23 (IL-23), and RECIST 1.1 to assess chemotherapy response in lung cancer patients at Saiful Anwar Hospital. A prospective observational study was performed to 47 lung cancer patients who received three cycles of platinum-based chemotherapy. Using the Breath Analyzer to measure certain volatile organic compounds (VOCs), the study observed that three of the seven VOCs examined, formaldehyde (CH2O), toluene (C7H8), and hexane (C6H14), showed lower levels after three cycles of chemotherapy. Furthermore, there was a negative correlation between RECIST1.1 and acetone (C3H6O) (p=0.023), while RECIST1.1 and methane (CH4) had a positive correlation (p=0.011). Moreover, a significant positive correlation was observed between IL-23 after-chemotherapy and RECIST 1.1 (p=0.000). According to this study, a correlation exists between methane, IL-23, and RECIST 1.1 after three cycles of chemotherapy. The increase in methane and IL-23 aligns with the disease progression determined by RECIST 1.1. Furthermore, The decrease in acetone after chemotherapy showed a negative correlation with RECIST1.1, consistent with disease progression.


Keywords: Volatile Organic Compound, Interleukin-23, RECIST 1.1.


Full Text:

PDF

References


Badan Pengawas Tenaga Nuklir, 2020, Diagnostic Reference Level (DRL) dan Status Terkini di Indonesia, Sist. Inf. Data Dosis Pasien. Link

Baird, A.-M., Dockry, É., Daly, A., Stack, E., Doherty, D.G., O’Byrne, K.J., and Gray, S.G., 2013, IL-23R is Epigenetically Regulated and Modulated by Chemotherapy in Non-Small Cell Lung Cancer, Front Oncol, 3, 162. CrossRef

Becker, R., 2020, Non-invasive cancer detection using volatile biomarkers: Is urine superior to breath?, Med Hypotheses, 143, 110060. CrossRef

Briukhovetska, D., Dörr, J., Endres, S., Libby, P., Dinarello, C.A., and Kobold, S., 2021, Interleukins in cancer: from biology to therapy, Nat Rev Cancer, 21, 481–499. CrossRef

Burgos-Barragan, G., Wit, N., Meiser, J., Dingler, F.A., Pietzke, M., Mulderrig, L., et. al., 2017, Mammals divert endogenous genotoxic formaldehyde into one-carbon metabolism, Nature, 548, 549–554. CrossRef

Cam, C., Karagoz, B., Muftuoglu, T., Bigi, O., Emirzeoglu, L., Celik, S., et al., 2016, The inflammatory cytokine interleukin-23 is elevated in lung cancer, particularly small cell type, Współczesna Onkologia, 20(3), 215–219. CrossRef

Einoch Amor, R., Nakhleh, M.K., Barash, O., and Haick, H., 2019, Breath analysis of cancer in the present and the future, European Respiratory Review, 28, 190002. CrossRef

Gashimova, E., Temerdashev, A., Porkhanov, V., Polyakov, I., Perunov, D., Azaryan, A., and Dmitrieva, E., 2020, Investigation of different approaches for exhaled breath and tumor tissue analyses to identify lung cancer biomarkers, Heliyon, 6(6), e04224. CrossRef

Haick, H., Broza, Y.Y., Mochalski, P., Ruzsanyi, V., and Amann, A., 2014, Assessment, origin, and implementation of breath volatile cancer markers, Chem. Soc. Rev., 43(5), 1423–1449. CrossRef

Hakim, M., Broza, Y.Y., Barash, O., Peled, N., Phillips, M., Amann, A., and Haick, H., 2012, Volatile Organic Compounds of Lung Cancer and Possible Biochemical Pathways, Chem. Rev., 112(11), 5949–5966. CrossRef

Hartwig, A., Arand, M., Epe, B., Guth, S., Jahnke, G., Lampen, A., et al., 2020, Mode of action-based risk assessment of genotoxic carcinogens, Arch Toxicol., 94, 1787–1877. CrossRef

Horváth, I., Barnes, P.J., Loukides, S., Sterk, P.J., Högman, M., Olin, A.-C., et al., 2017, A European Respiratory Society technical

standard: exhaled biomarkers in lung disease, European Respiratory Journal, 49(4), 1600965. CrossRef

Jia, Z., Zhang, H., Ong, C.N., Patra, A., Lu, Y., Lim, C.T., and Venkatesan, T., 2018, Detection of Lung Cancer: Concomitant Volatile Organic Compounds and Metabolomic Profiling of Six Cancer Cell Lines of Different Histological Origins, ACS Omega, 3, 5131–5140. CrossRef

Ko, C.-C., Yeh, L.-R., Kuo, Y.-T., and Chen, J.-H., 2021, Imaging biomarkers for evaluating tumor response: RECIST and beyond, Biomark. Res., 9, 52. CrossRef

Koh, J., Kim, H.Y., Lee, Y., Park, I.K., Kang, C.H., Kim, Y.T., et al., 2019, IL23-Producing Human Lung Cancer Cells Promote Tumor Growth via Conversion of Innate Lymphoid Cell 1 (ILC1) into ILC3, Clinical Cancer Research, 25(13), 4026–4037. CrossRef

Li, J., Zhang, L., Zhang, J., Wei, Y., Li, K., Huang, L., et al., 2013, Interleukin 23 regulates proliferation of lung cancer cells in a concentration-dependent way in association with the interleukin-23 receptor, Carcinogenesis, 34(3), 658–666. CrossRef

Listiandoko, R.D.W., Setyawan, U.A., and Astuti, T., 2022, EP01.01-004 The Correlation Between Exhaled Volatile Organic Compounds Using Breath Analyzer and Interleukin-23 (IL-23) in Lung Cancer, Journal of Thoracic Oncology, 17(9), S161. CrossRef

Listiandoko, R.D.W., Setyawan, U.A., Tri Wahju Astuti, Djajalaksana, S., Listyoko, A.S., and Ponco, A.Y., 2023, Volatile Organic Compounds (VOCs) and Interleukin-23 Levels in Lung Cancer: A Future Biomarker, Jurnal Respirasi, 9(2), 80–86. CrossRef

Liu, D., Xing, S., Wang, W., Huang, X., Lin, H., Chen, Y., et al., 2020, Prognostic value of serum soluble interleukin‐23 receptor and related T‐helper 17 cell cytokines in non‐small cell lung carcinoma, Cancer Sci., 111(4), 1093–1102. CrossRef

Marino, F.Z., Bianco, R., Accardo, M., Ronchi, A., Cozzolino, I., Morgillo, F., et al., 2019, Molecular heterogeneity in lung cancer: from mechanisms of origin to clinical implications, Int J Med Sci., 16(7), 981–989. CrossRef

Marzorati, D., Mainardi, L., Sedda, G., Gasparri, R., Spaggiari, L., and Cerveri, P., 2019, A review of exhaled breath: a key role in lung cancer diagnosis, J Breath Res., 13, 034001. CrossRef

Nardi-Agmon, I., Abud-Hawa, M., Liran, O., Gai-Mor, N., Ilouze, M., Onn, A., et al., 2016, Exhaled Breath Analysis for Monitoring Response to Treatment in Advanced Lung Cancer, Journal of Thoracic Oncology, 11(6), 827–837. CrossRef

Pangribowo, S., 2019, Beban Kanker di Indonesia, Pusat Data Dan Informasi Kesehatan Kementerian Kesehatan RI, 1–16.

Pastor-Fernández, G., Mariblanca, I.R., and Navarro, M.N., 2020, Decoding IL-23 Signaling Cascade for New Therapeutic Opportunities, Cells, 9(9), 2044. CrossRef

Ratiu, I.A., Ligor, T., Bocos-Bintintan, V., Mayhew, C.A., and uszewski, B., 2020, Volatile Organic Compounds in Exhaled Breath as Fingerprints of Lung Cancer, Asthma and COPD, J. Clin. Med., 10(1), 32. CrossRef

Rocco, G., Pennazza, G., Santonico, M., Longo, F., Rocco, R., Crucitti, P., and Incalzi, R.A., 2018, Breathprinting and Early Diagnosis of Lung Cancer, Journal of Thoracic Oncology, 13(7), 883–894. CrossRef

Rudnicka, J., Kowalkowski, T., and Buszewski, B., 2019, Searching for selected VOCs in human breath samples as potential markers of lung cancer, Lung Cancer, 135, 123–129. CrossRef

Santonico, M., Lucantoni, G., Pennazza, G., Capuano, R., Galluccio, G., Roscioni, C., et al., 2012, In situ detection of lung cancer volatile fingerprints using bronchoscopic air-sampling, Lung Cancer, 77(1), 46–50. CrossRef

Siegel, R.L., Miller, K.D., and Jemal, A., 2017, Cancer statistics, 2017, CA Cancer J Clin., 67(1), 7–30. CrossRef

Stefanuto, P.-H., Zanella, D., Vercammen, J., Henket, M., Schleich, F., Louis, R., and Focant, J.-F., 2020, Multimodal combination of GC × GC-HRTOFMS and SIFT-MS for asthma phenotyping using exhaled breath, Sci Rep., 10, 16159. CrossRef

Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F., 2021, Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA Cancer J Clin., 71(3), 209–249. CrossRef

Tong, H., Wang, Y., Li, Y., Liu, S., Chi, C., Liu, D., et al., 2017, Volatile organic metabolites identify patients with gastric carcinoma, gastric ulcer, or gastritis and control patients, Cancer Cell Int., 17, 108. CrossRef

Tsou, P.-H., Lin, Z.-L., Pan, Y.-C., Yang, H.-C., Chang, C.-J., Liang, S.-K., et al., 2021, Exploring Volatile Organic Compounds in Breath for High-Accuracy Prediction of Lung Cancer, Cancers (Basel), 13(6), 1431. CrossRef

WHO IARC, 2021, Cancer today: Lung cancer, WHO IARC Cancer Today. Link

Yan, J., Smyth, M.J., and Teng, M.W.L., 2018, Interleukin (IL)-12 and IL-23 and Their Conflicting Roles in Cancer, Cold Spring Harb Perspect Biol., 10, a028530. CrossRef




DOI: http://dx.doi.org/10.14499/indonesianjcanchemoprev14iss3pp171-180

Copyright (c) 2023 Indonesian Journal of Cancer Chemoprevention

Indexed by:

                  

               

 

Indonesian Society for Cancer Chemoprevention